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Abstract

This thesis presents an implementation of Laplacian image pyra-
mids in the spatial and temporal domains of a video stream. All of
the computationally expensive per-pixel work has been implemented
on the graphics card, using Cg fragment shaders.

The high vector processing performance even of cheap mid-range
graphics cards outperforms the CPU by far for many imaging tasks.
Using this hardware, it is possible to perform full spatio-temporal
filtering of high resolution video material at interactive framerates
beyond 30 fps.

This hardware accelerated filtering system has been integrated into
an existing CPU based framework to allow for nearly seemless switch-
ing and mixing of CPU and GPU based algorithms, as well as to allow
for straightforward implementations of further GPU based algorithms.
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1 Introduction

The Gaussian image pyramid is a simple multi-resolution pyramid commonly
used for image processing. It stores a set of successively lowpass filtered and
subsampled versions of an image to allow for fast access to image features of
specific frequencies or sizes. The Laplacian pyramid is an extension to the
Gaussian pyramid and was first described by P. J. Burt and E. H. Adelson
in [1] and [4]. The original use for this multi-resolution pyramid was data
compression. In the pyramid, an image is seperated into distinct frequency
bands. This reduces the correlation of neighbouring pixel values and largely
reduces the number of non-zero pixels. The resulting — mostly zero and
reduced in resolution — images provide a good basis for various compression
algorithms.

Because of the distinct frequency bands stored in the pyramid, it is also
very well suited for frequency or size dependent filtering and image analysis.
Such techniques include image blur and sharpen filters, efficient template
matching [3], image mosaicing [5], and texture synthesis [9].

Also, various research has been done in the area of human vision, where
Gaussian pyramids were used for frequency filtering. This research includes
the simulation of visual fields and investigation of the effects of frequency
filtered video streams on the eye movements of the observer (See [8], [6], [2]).
Spatial and temporal filtering of videos has been employed. The algorithms
which were used in these papers are CPU based and can easily push typical
PC processors to their limits, given a sufficiently large video image resolu-
tion. Laplacian pyramids could not be used because of their even higher
computational requirements.

Over the last years, the shading capabilities of graphics cards have seen in-
creasing uses in general purpose computation, because of their high floating-
point performance. Also, the flexibility of the shader programs, which are
used for those computations, has recently become almost identical to that
of a CPU (missing mostly pointer-arithmetic). Using this processing power,
it is now possible to transform a large set of algorithms to use the vector
processing units of the graphics card.

A simple form of a hardware accelerated spatial Gaussian image pyramid
is described in [7]. This approach utilized the texturing capabilities of (non-
shader capable) graphics cards to implement an approximation to a Gaussian
pyramid, which was used to simulate visual fields.

With the use of todays shader capabilities, we can go some steps further



now and implement a full GPU!-based Laplacian pyramid in the spatial
domain, as well as the temporal domain of a video stream. The performance
of current mid-range hardware allows for full filtering of high definition videos
(1280x720) at interactive frame rates beyond 30 Hz. This implementation has
been integrated into an existing framework used for realtime gaze-contingent
manipulation of videos using an eye-tracker.

2 The Laplacian Pyramid

2.1 Gaussian Pyramid

The Gaussian pyramid is the base structure from which later the Laplacian
pyramid is built. It contains a stack of signals (images in the spatial case),
where each consecutive level contains a successively lowpass filtered version
of the original signal. The lowpass filtered signals can be stored at reduced
sampling rate an thus require less storage space.

The pyramid is constructed by iteratively applying a lowpass filter and
subsampling of the resulting signal. This process is repeated until a signal
length of 1 or a specific maximum number of levels is reached. Because ideal
lowpass filtering is expensive, a Gaussian filter is used as an approximation
(5-tap binomial kernel). The upper part of Figure 1 shows the pyramid
generation in the spatial case.

With this structure, it is now possible to generate arbitrary approxi-
mated lowpass filtered versions with very low computational overhead. The
construction of these images is done by interpolating between neighbouring
levels. The cutoff frequency can be varied per pixel by choosing different
interpolation coefficients and levels.

Using this property to efficiently generate arbitrary lowpass filtered ver-
sions of the individual pixels, gaze-contingent displays can be implemented,
which vary the amount of information (cutoff frequency) of the displayed
image per-pixel, depending on the gaze direction of the observer. [8] gives a
detailed description of such a system.

LGPU = Graphics Processing Unit



2.2 Laplacian Pyramid

The Laplacian pyramid is an extension of the Gaussian pyramid. It stores
distinct frequency bands instead of only lowpass filtered signals. This allows
the original signal not only to be lowpass filtered, but it becomes possible to
amplify or attenuate the frequency bands individually.

To build the extended pyramid, for each level of the Gaussian pyramid,
the difference of the Gaussian signal with the lower resolution level is com-
puted. This difference corresponds to a bandpass filtered version of this level.
The result is a set of bandpass filtered images which form the basis functions
for reconstructing or modifying the original signal (See Figure 2).

Because of the different sampling rates of the levels, in each step, the
low resolution level has to be upsampled by a factor of two before the sub-
straction can be performed. This upsampling procedure works by first taking
the low resolution signal, inserting zeros between every neighbouring sam-
ples, thus doubling the signal resolution, and then applying the same 5-tap
binomial kernel, which was used in the downsampling step. This results
in a smooth, position invariant interpolation without discontinuities in the
upsampled result.

The image can be reconstructed perfectly by reversing the construction
steps. The lowest resolution level is taken, upsampled, and added pixel by
pixel to the next higher level, resulting in the correponding Gaussian level.
This process is then repeated until the highest resolution level is reached
and the image is reconstructed. See Figure 1 for a breakdown of the whole
algorithm. For changing the contribution of the frequency bands, a scale
factor can be applied on each iteration of the reconstruction algorithm to
weight the levels differently.

2.3 Spatio-temporal application

In the case of this thesis, the signal is a video stream which is to be filtered
in both the two spatial and the temporal dimensions. This is achieved by
first creating a pyramid for only the temporal dimension. Then, after recon-
structing a modified version from this temporal pyramid, a spatial pyramid
is built from the output image. The up- and downsampling for the spatial
pyramid is done simultaneously in both dimensions of the image (see Figure

1).
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Figure 2: Approximated spectrum of the images stored in the pyramid
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Figure 3: Examples of different Laplace reconstruction weights
The tempo-spatial pyramid used for these images has eight spatial levels and
five temporal levels. Weights are given from highest to lowest resolution level.



3 The OpenGL/Cg Rendering Pipeline

This section lists the structure of the rendering pipeline, on which the frame-
work is built. See Figure 4 for a simple graphical overview. The basic stages
of the pipeline are:

1. Vertex processing

At this stage the vertices, which make up the render primitives (such
as points, lines, triangles), are transformed into clip-space. Addition-
ally, arbitrary computations can be done on each vertex using a vertex
shader. Such a vertex shader gets a set of per-vertex attributes, such
as position and texture coordinates, as well as user defined constant
values ("uniforms’). It can then compute the clip-space vertex position
and optional user-defined values ("varyings’), which will be interpolated
across the primitive and are available as inputs to the fragment shader.

2. Primitive assembly

Here, the vertices of the previous stage are used to build up the actual
geometric primitives (e.g. triangles). In the case of image filtering,
Those primitives will always be pairs of triangles, forming rectangles
which fill the whole rendering area.

3. Rasterization

The primitives are now typically rasterized using a scanline algorithm.
A fragment shader can be used to modify the output for each pixel (or
more specific ‘fragment’). The final fragments are then written either
to a framebuffer, which is displayed to the user, or to a texture, which
can be used for further rendering.
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Figure 4: Overview of the OpenGL graphics pipeline

In the system implemented for this thesis, only rectangles are drawn,
which cover the whole render target and the only interesting stage is raster-
ization. The z-coordinate of is set to zero, so, effectively, only the x and y
dimensions of the 3D pipeline are used. The vertex processing stage will just
automatically transform the vertices into clip-space and interpolate the tex-
ture coordinates over the rectangles. The fragment shaders are responsible
for all of the important work.

The fragment shader will receive, in addition to the texture coordinate,
an arbitrary set of textures and floating point values as inputs (uniform
attributes). The input textures can be sampled at any coordinate and any
number of times up to a hardware-dependent limit. This allows for a large
number of filters to be implemented directly as a shader.



4 Implementation on the GPU

4.1 Framework

The communication with the GPU is done here using Cg? fragment shaders
on OpenGL3. The platform specific code is hidden behind a set of classes,
which provide a high level interface for performing texture operations. In
Listing 1, pseudo-code is given for a simple application, which applies spatio-
temporal filtering to a video stream using constant weights.

The system has been designed to fit into the already existing CPU based
framework. It is possible to mix CPU and GPU based algorithms by inter-
changing images, which are stored in system RAM. The abstractions of the
system have been chosen to allow for simple implementation of further GPU
based algorithms.

The following enumeration lists the classes along with the most important
methods, which are used in this paper. Figure 5 gives a graphical overview
of the classes.

GLTextureWindow:

The window used to display a single texture image stretched over the
full window area. A shader can optionally be applied for output mod-
ifications such as colour space conversions.

o SetTexture(texture): Sets the displayed texture

e SetShader(shader): Sets the shader, that is applied to the dis-
played texture

Texture:

A basic (two dimensional) texture image. Textures are stored on the
graphics card and are either initialized using existing image data, or by
using a TextureTarget/TextureOperator.

e SetImageData(image): Updates the texture with the specified im-
age data from system RAM.

’http://developer.nvidia.com/page/cg_main.html
3http://www.opengl.org/



Shader:

A full shader program (fragment shader and optional vertex shader
linked together). The shader program is loaded from an external text
file stored on the file system. Parameters can be specified using the
SetInput(...) methods. Textures and floating point values are allowed
as parameters.

e SetInput(name, value): Sets the specified uniform input (texture
or floating point value).

TextureTarget:

Performs render-to-texture operations using an FBO*. This class is a
helper class used by TextureOperator.

e Setup(width, height): Sets the size of the destination texture.
e BeginRender(): Starts the rendering process.

e FinishRender(): Finalizes the rendering and stores the resulting
image into an internal texture.

o GetTexture(): Returns a reference to the internal destination tex-
ture.

TextureOperator:

Applies a shader to a given set of input values. Input values can either
be scalar values or texture images. The resulting image is stored as a
target texture, which can in turn be used for successive processing.

e Setup(width, height): Sets the size of the destination texture.

e SetShader(shader): Sets the shader, which is used to process the
inputs.

e Setlnput(name, value): Sets the specified input for the currently
set shader.

e Execute(): Performs the rendering into an internal destination
texture using the specified shader and input values.

e GetResult(): Returns a reference to the internal destination tex-
ture.

“http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
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Texturelnterpolator:

Performs a simple weighted sum operation on a set of textures. The
resulting image is again stored into a texture. If a texture is specified
more than once, its associated weights will be added and the texture is
only accessed once.

e Setup(width, height): Sets the size of the destination texture.
e Beginlnterpolation(): Starts a new interpolation process.

o AddImage(texture, weight): Adds the specified image, multiplied
by ‘weight’. Negative values are allowed.

e FinishInterpolation(): Finalizes the interpolation operation and
returns a reference to the resulting texture.

SpatialPyramidCG:

Implements the image space (spatial) Laplacian pyramid.

e Setup(width, height, levels): Initializes the size of the pyramid.

e SetImageData(texture): Sets the lowest level (full resolution) and
updates the rest of the pyramid accordingly.

e GetLaplace(weights): Reconstructs an image using the specified
weights.

TemporalPyramidCG:

Implements the animation space (temporal) Laplacian pyramid.

e Setup(width, height, levels): Initializes the size of the pyramid.

e AddFrame(texture): Adds a new image to the sequence of the
lowest level and updates the pyramid.

e GetLaplace(weights): Reconstructs an image using the specified
weights.

Only GLWindow, Texture, Shader and TextureTarget contain platform
specific code. This makes porting to different platforms and shading lan-
guages (such as Direct3D/HLSL or OpenGL/GLSL) an easy task.

11



SpatialPyramidCG

Setup(width : int, height : int, levels : int)
SetlmageData(texture : Texture)
GetLaplace(weights : float[])

TextureOperator 4

Setup(width : int, height : int)
SetShader(shader : Shader)
Setlnput(name : string, value : float)
Setlnput(name : string, value : Texture)
Execute()
GetResult() : Texture

TextureTarget

Setup(width : int, height : int)
BeginRender()
FinishRender()

GetTexture() : Texture

GLTextureWindow

SetTexture(texture : Texture)
SetShader(shader : Shader)

TemporalPyramidCG

Setup(width : int, height : int, levels : int)
AddFrame(texture : Texture)
GetlLaplace(weights : float[])

Texturelnterpolator

Setup(width : int, height : int)
BeginInterpolation()

AddIimage(texture : Texture, float weight)
FinishInterpolation()

= Texture

SetlmageData(image : Image)

| Shader

Setlnput(name : string, value : float)
Setlnput(name : string, value : Texture)

Figure 5: Class structure of the framework
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Listing 1: Example application using the framework to filter a video sequence

// the wvideo source
VideoSource source

// create the output window
GLTextureWindow window

// setup a temporal pyramid with 5 levels
TemporalPyramidCG tempPyramid
tempPyramid. Setup (source.width, source.height, 5)

// setup a spatial pyramid with 5 levels
SpatialPyramidCG spatPyramid
spatPyramid . Setup (source.width, source.height, 5)

// intermediate textures needed for processing
Texture frameTexture

Texture tempResult

Texture spatResult

// run the main application loop

while source.HasFrames|()
// get the mnext frame from the wvideo source
Image frame = source.GetNextFrame ()

// upload the resulting image to a texture
frameTexture . SetImageData (frame)

// stream this texture into the temporal pyramid
tempPyramid . AddFrame (frameTexture )

// .. and compute a filtered wversion of the wvideo at the
// sampling position

tempResult = tempPyramid.GetLaplace ([0.2, 0.5, 1, 1, 1])

// now filter the temporally filtered result spatially
spatPyramid . SetImageData (tempResult)
spatResult = spatPyramid.GetLaplace ([0.2, 0.5, 1, 2, 1])

// display the result
window . SetTexture (spatResult)
end

13




4.2 The spatial pyramid
4.2.1 Generation

The spatial Laplacian pyramid consists of a specifiable fixed number of N
levels, where level 0 has the full resolution image and for each subsequent level
the resolution is divided by a factor of two. Each of the levels contains two
TextureOperator objects. The first texture operator, ‘downsampler’, is used
to blur and downsample the level for building the next gaussian level. The
second one, ‘laplaceGenerate’; is used for the upsampling and subtraction of
a lower level to build the corresponding Lapalace level. See Figure 6 for an
overview.

Gauss generation Laplace generation

inputTexture : Texture

level 0, 640x480

gaussTexture : Texture

laplaceTexture : Texture €———|
downsampler : TextureOperator
laplaceGenerate : TextureOperator —

level 0, 640x480

»gaussTexture : Texture
laplaceTexture : Texture
downsampler : TextureOperator.
laplaceGenerate : TextureOperator

laplaceReconstruct : TextureOperator | laplaceReconstruct : TextureOperator
C level 1, 320x240 level 1, 320x240
» gaussTexture : Texture I gaussTexture : Texture

laplaceTexture : Texture €————|
downsampler : TextureOperator
laplaceGenerate : TextureOperator —
| laplaceReconstruct : TextureOperator

laplaceTexture : Texture
downsampler : TextureOperator
laplaceGenerate : TextureOperator
laplaceReconstruct : TextureOperator

level 2, 160x120 level 2, 160x120

- gaussTexture : Texture gaussTexture : Texture
- laplaceTexture : Texture laplaceTexture : Texture

Figure 6: Dataflow for the spatial pyramid construction
The left side shows the generation of the Gaussian part of the pyramid. Then,
on the right side, the result is processed in the opposite direction to build
the Laplacian images.
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The process for building the Laplacian pyramid is now quite simple. First,
the input image is downsampled N — 1 times to build the downsampled
versions for the levels 1 to N — 1. Then, the pyramid is processed in the
opposite direction, starting from level N — 2, up to level 0, where in each
iteration two levels are subtracted to get the Laplace image for that level.

Listing 2: Generation of the spatial pyramid

method SpatialPyramidCG . SetImageData (inputTexture)
// level 0 takes the input picture without any processing
level [0]. gaussTexture = inputTexture

// build the gaussian pyramid...
for i = 0 to N-2
level [i].downsampler
.SetInput (”input”, levels[i].gaussTexture)
.Execute ()

level [1+1].gaussTexture
= level[i].downsampler.GetResult ()
end

// the lowest resolution laplace level is the same as the
// lowest gaussian level
level [N—1].laplaceTexture = level [N—1].gaussTexture

// build the laplacian pyramid
for i = N-2 to 0
levels[i].laplaceGenerate
.SetInput (”low”, levels[i+1].gaussTexture)
.SetInput (”high”, levels[i].gaussTexture)
.Execute ()

levels[i].laplaceTexture
= levels[i].laplaceGenerate.GetResult ()
end
end

15




The downsampling/filtering of the levels is done by the following CG
shader:

Listing 3: Downsampling of an image in the Gaussian pyramid

#include 7 filter .cg”

struct foutput {
float4 color : COLOR;

b

foutput main(float2 texCoord : TEXCOORDO,
uniform sampler2D input : TEXO,
uniform float2 delta_input)
{
foutput OUT;
OUT. color = gaussbx5l(input, texCoord, delta_input);
return OUT;

}

Listing 4: A 5x5 binomial filter exploiting linear texture sampling

// in filter.cg

const float gauss_kernel_4x4[4][4] = {
{0.015625, 0.046875, 0.046875, 0.015625},
{0.046875, 0.140625, 0.140625, 0.046875},
{0.046875, 0.140625, 0.140625, 0.046875},
{0.015625, 0.046875, 0.046875, 0.015625},
}s

float4 gauss5x5l( sampler2D tex, float2 tc, float2 delta ){

tc —= 0.5xdelta;
float4 ¢ = 0;
for( int y = —1; y <= 2; y++ ){

for( int x = —1; x <= 2; x++ ){

¢ += gauss_kernel_4x4 [x+1][y+1]
x tex2D (tex , tc + float2(x,y)xdelta);
}

}

return c;

}
//

This version of the 5x5 binomial filter is exploiting the fact, that the input

16




texture is automatically sampled with linear interpolation by the GPU. The
source texture is sampled halfway between the texel centers to yield the
average value of the four neighbouring texels, which corresponds to a 2x2
binomial filter. These values are then filtered through a 4x4 binomal filter,
yielding the final 5x5 filtered result.

For the generation of the corresponding Laplace image, the following
shader is used:

Listing 5: Generation of a Laplace level given two Gaussian levels

#include 7 filter .cg”

struct foutput {
float4 color : COLOR;

}s

foutput main(float2 texCoord : TEXCOORDO,
uniform sampler2D low : TEXO,
uniform float2 delta_low ,
uniform sampler2D high : TEXI1,
uniform float2 delta_high)

{
foutput OUT;
// upsample the low resolution level and subtract from
// the high resolution one
OUT. color = tex2D(high, texCoord) —

upsample_2_gaussbx5l(low, texCoord, delta_low);

// add a bias to account for the wunsigned texture format,
// which can only store wvalues from 0 to 1
OUT. color = OUT. color«0.5 + 0.5;
return OUT;

}

17




Listing 6: Upsampling of an image by a factor of two

// performs the equivalent of inserting a black pizel
// between every two neighbouring pizels in the source
// texture and then applying a gaussian 5z5 filter.
// This version exploits the linear texture sampling,
// like the downsampling filter does.
float4 upsample_2_gauss5x5l(

sampler2D tex, // the source texture

float2 tc, // texture coordinate [0 .. 1]

float2 delta // tex. coord. delta of one texel

)

+
+
_|_

{
float2 texel = tc/delta;
float2 texel_ 1 = floor (texel);
bool2 center = texel—texel_ 1 < 0.5;
const float2 toff = 0.25;
if( center.x ){
if( center.y ){
return 0.25 * (
tex2D (tex, tc + (float2(—0.2, —0.2)+toff)xdelta)
tex2D (tex, tc + (float2(+0.2, —0.2)+toff)xdelta)
tex2D (tex, tc + (float2(—0.2, 4+0.2)+toff)xdelta)
tex2D(tex, tc + (float2(4+0.2, 4+0.2)+toff)xdelta)
)
} else
return 0.5 * (
tex2D(tex, tc + (float2(—0.25, 0)+toff)xdelta) +
tex2D (tex, tc + (float2(+0.25, 0)+toff)xdelta)
)
}
} else {
if( center.y ){
return 0.5 % (
tex2D(tex, tc + (float2(0, —0.25)+toff)xdelta) +
tex2D (tex, tc + (float2 (0, +0.25)+toff)xdelta)
)
} else
return tex2D(tex, tc+(float2(0,0)+ toff)xdelta);
}
}
}

18




4.2.2 Reconstruction

For the reconstruction of a modified output image, the pyramid is processed
again from level N —1 to level 0. Each level is multiplied by its corresponding
weight and then added to the upsampled result of the previous level, if any.
This is the same algorithm as outlined in Figure 1.

Listing 7: Reconstruction of the modified spatial image

method SpatialPyramidCG . GetLaplace(weights [N])
// begin with the lowest level
result = level [N—1].laplaceTexture

// iterate up to the highest level
for i = N-2 to 0
if i = N-2 then
lowWeight = weights [N—1]
else
lowWeight = 1
end

level [i].laplaceReconstruct
.SetInput (”low”, result)
.SetInput ("lowWeight” , lowWeight)

(
.SetInput (”high”, level[i].laplaceTexture)
.SetInput (”highWeight”, weights[i])
. Execute ()
result = level[i].laplaceReconstruct.GetResult ()
end

return result
end
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Listing 8: Spatial reconstruction shader

#include 7 filter .cg”

struct foutput {
float4 color : COLOR;

i

foutput main(float2 texCoord : TEXCOORDO,
uniform float lowWeight ,
uniform sampler2D low : TEXO,
uniform float2 delta_low ,
uniform float highWeight ,
uniform sampler2D high : TEXI1,
uniform float2 delta_high)

foutput OUT;

// upsample the low texture by a factor of two,
// using a 5xz5 gauss filter
OUT. color = lowWeight
upsample_2_gaussbx5l(low, texCoord, delta_low);

// add the high resolution texture, removing the bias
OUT. color 4= highWeight =
(tex2D (high , texCoord)*2.0 — 1.0);

return OUT;

20



4.3 The temporal pyramid
4.3.1 Generation

The temporal pyramid is very simple on the GPU side, as only weighted sums
of full images have to be computed and no image space filtering is happening.
Conceptually, for a pyramid of M levels, the images are stored in a cyclic
array of size 2M*1. Each consecutive level has half the number of frames, each
computed by applying the 5-tap binomial kernel to its neighbouring frames
in the previous level. The actual sampling using GetLaplace() is done at the
index 2M*+1 — 2. This is required so that the generation and reconstruction
processes, which conceptually run in parallel for the lifetime of the pyramid,
do not overlap in the cyclic array. See Figure 7 for a visualization of these
areas. The latency caused by this requirement makes the temporal filtering
suitable only for prerecorded videos, where video latency is not an issue.

0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15
scrolling direction

»
>

level 2

level 1

input . position

.sampling. position -

level 0

The first position in the array, at which a The area, in which the frames required
frame at the specific level can be generated for the reconstruction are stored

. A stored image A frame index with no array entry

Figure 7: The structure of the temporal pyramid

In this case, only the Gaussian pyramid is stored in memory. The Lapla-
cian images will be computed on the fly to reduce the used amount of memory
bandwith (assuming only one output image will be computed per frame).

Before the pyramid update algorithm can run, a filter kernel has to be
computed for each level, which is used for proper upsampling any level to
level 0 (highest resolution). This is done in the Setup() method:
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Listing 9: Initialization of the temporal pyramid

// M is the number of levels in the pyramid
method TemporalPyramidCG. Setup (width, height , M)
// compute the number of samples/images
// in the highest level
W= 2"(M+1)

// set the frame counter to zero
currentFrame = 0

// setup all levels of the pyramid

for 1 = 0 to M-1
// the number of samples in this level
W[l] =W / 271

// setup all samples of this level
for j =0 to W[1]—-1
level [i].sample[j].baselndex = j
level [i].sample[j].downsampler
.Setup (width, height)
.SetShader (" temporalpyramid_downsample”)
end

// compute the upsampling kernel for this level
if 1 = 0 then
level [1]. kernel = [1]
else
level [1]. kernel
= convSpread(level [1 —1].kernel, gauss_kernel_5)

// convSpread (A, B):
// A’ = insert a 0 after each sample of A
//  return the convolution of A’ and B
end
end

// set the reconstruction position
samplingPosition =W — 2

// setup the interpolator
interpolator.Setup (width, height)
end
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The AddFrame() method then scrolls the cyclic array by one position and
inserts the new image into the first array position of the highest pyramid level.
Then, for each successive level, the first possible position to compute a new
sample from its five children is checked for an array entry. If an entry exists
at that position, the new sample is computed and stored there. See Figure
7 for a visualization of these positions.

Listing 10: Algorithm for appending a sample to the temporal pyramid

method TemporalPyramid.AddFrame(texture)

// advance the frame counter

currentFrame = currentFrame + 1

// and update the first sample

level [0].sample[currentFrame mod W[0]].image = texture

// check in each level whether there is an image that can
// be computed now

// firstPossiblePos is the first position for each level,
// where a sample of that level can be computed using its
// & high resolution child samples in the previous level.
firstPossiblePos = 2

for 1 =1 to M-1
if ImageExists(l, firstPossiblePos) then
ComputeGaussImage (1, firstPossiblePos)
end
firstPossiblePos = firstPossiblePos + 2%271
end
end

method TemporalPyramid.ComputeGaussImage (1, frame)
for i = -2 to 2
cidx = GetChildIndex (1, frame, i)
level [1].downsampler
.SetInput (”input[i4+2]”, level [l —1].image[cidx])
end

level [i].downsampler.Execute ()
level [i].image = level [i].downsampler. GetResult ()
end

method TemporalPyramidCG.ImageExists(level , frame)

return GetGausslmagelndex(level , frame) != —1
end
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method TemporalPyramidCG . GetChildIndex (level , frame, offset)
// compute the position of the specified child
childframe = frame + offset*2"(level —1))

// return the index of the image at that position
return GetGausslmage(level —1, childframe)
end

method TemporalPyramidCG . GetGaussImagelndex (level ; frame)
if frame < 0 or frame > currentFrame then
return —1
end

// index relative to the current frame
offset = currentFrame — frame

// corresponding sample in the specified level
offset_level = offset / 2" level

// check if we are actually between two frames

if offset_level % 2" level != offset then
return —1

end

// we hit a frame exactly, return
// the actual index into the level array
return idx_level mod W[level]

end

4.3.2 Reconstruction

The reconstruction of a final output image (i.e. a weighted sum of the Lapla-
cian basis images) is done by upsampling all Gaussian levels up to full res-
olution and computing a weighted sum of those — the pairwise subtraction
is done implicitly by modifying the weights accordingly. The upsampling
of the low resolution levels N — 1 to 1, in this case, is not done by itera-
tively doing an upsampling of factor 2. Instead, the full level of resolution is
computed at once for each level. This saves a large amount of memory and
memory bandwith, which would otherwise be required for the intermediate
frames. Also, this approach is computationally (number of texture accesses,
additions, and multiplications) cheaper, as long as it is done only once per
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frame. See Figure 8 and 9 for a rough comparison of the two methods. The
reconstruction algorithm now looks as follows:

Listing 11: Reconstruction algorithm for the temporal pyramid

method TemporalPyramidCG . GetLaplace (weights [M])
interpolator.BeginInterpolation ()

for i = 0 to M-1
if i < M-1 then
// subtract two (gauss) levels to get the
// corresponding laplace level
UpsampleLevel (i, weights[i])
UpsampleLevel (i+1, —weights[i])
else
// the lowest gauss level is equivalent
// to the lowest laplace level
UpsampleLevel (i, weights[i])
end
end

return interpolator.FinishInterpolation ()
end

method TemporalPyramidCG . UpsampleLevel (1, weight)
kernelSize = level[l]. kernel.size
kernelOffset = —kernelSize / 2

// convolve the upsampling filter with the level array
for i = 0 to kernelSize—1

frame = samplingPosition + kernelCenter + i
idx = GetGausslmage(l, frame)

// if we hit a frame here,

if idx != —1 then
// add it with the according weight
imageweight = weight % level[l]. kernel[i]

interpolator .
AddImage(level [1].image[idx], imageweight)
end
end
end
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5 Optimization

In the various parts of the system, several optimizations to the naive algo-
rithm have been employed. However, there is still room for further optimiza-
tion. Some of these points will be listed in this section.

5.1 Spatial filtering

For spatial filtering, the texture accesses have been reduced by exploiting
the fact that sampling in the center of four neighbouring texels is equivalent
to performing a 2x2 binomial kernel convolution of the texture. This is a
side-effect of the linear interpolation, which the hardware provides for tex-
ture sampling. The number of texture accesses for performing a 5x5 kernel
convolution are therefore reduced from 25 to 16. The upsampling filter goes
a bit further by adjusting the texture coordinates to different fractions to get
the desired weights.

Further reduction can be achieved by filtering the images seperately in
the two spatial dimensions. This is possible because the used binomial kernel
is a separable filter and thus applying a 1x5 binomial kernel followed by a
5x1 one gives the same result as applying a 5x5 kernel directly. This further
reduces the number of per-pixel accesses to 10 or 8, respectively, at the cost
of some memory and additional write accesses.

Currently the slowest part of the spatial pyramid is the upsampling filter.
The shader (Listing 6) contains a large number of alternative execution paths
with different texture sampling operations. This has a severe impact on
performance — especially on cards which do not support native conditional
code execution. A precomputed upsampling texture could be used to simplify
the shader to five texture accesses without the conditional logic.

5.2 Temporal filtering

For temporal filtering, the main performance issue is the huge memory re-
quirement. A full Laplacian pyramid of M levels would require roughly 2¥+3
times the size of a single video frame. For a HD video with a resolution of
1280x720 this amounts to almost 7T00MB of data for 5 pyramid levels (cor-
responds to a kernel size of about one second at 30 Hz), which pushes even
the highest end graphic cards to their limits.

The approach in this implementation is to store only the Gaussian pyra-
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mid. That reduces the number of stored frames to about 2¥*2, which leads
to about 340MB memory required for the previous example. A single re-
construction will also require about half of the number of texture accesses
compared to the basic algorithm. This is sketched in Figures 8 and 9.

For a further reduction of the memory use by a factor of two, the video
frames could be handled as three seperate textures, where the U and V
components would have half the resolution of the Y texture. This approach
would however add considerably to the implementation complexity. An alter-
native would be to use an appropriate OpenGL extension (EXT_422_pixels,
APPLE_ycber 422, MESA _ycber_texture). Unfortunately, those extensions
don’t seem to have widespread support on mainstream OpenGL implemen-
tations.

0 1 2 3 4 5 6 7 8 9 10 M1 12 13 14 15

level 2
level 1
level 0

Number of texture-sampling operations required on average for reconstructing four successive frames

1. Samples required for building the gaussian samples: 3*5 = 15
2. Samples required for building the laplacian samples: 5+10 = 15
3. Samples required for reconstructing level 2 to 1: 5+2 = 7
Samples required for reconstructing level 1 to 0: 10+4 = 14
Samples required for sampling level O: 0
Samples required for complete reconstruction: 15+15+7+14 = 51

Figure 8: Successive reconstruction of three temporal levels

5.3 Concurrency

When using the GPU to reduce the workload of the CPU, it is important
to schedule the operations in a way that maximizes concurrency. The only
considerable task of the CPU in this case is to decode the video frame and
send that to the GPU. To improve the concurrency, this process is moved
from the beginning of the frame processing to the middle. That way, while
the GPU is processing the current video frame, the CPU is already busy
decoding the next one.
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1. Samples required for building the gaussian samples: 3*5 = 15
2. Samples required for building the laplacian samples: 0
3. Samples required for upsampling level 2 to 0: 3+3+4+3 = 13
Samples required for upsampling level 1 to 0: 3+2+3+2 = 10
Samples required for sampling level O: 4

Samples required for complete reconstruction: 15+0+13+10+4 = 42

For 3 levels, 9 samples less are needed than for the successive version. For higher numbers of levels, the
percentage of saved samples will increase, approaching about 50%.

Figure 9: Direct reconstruction of three temporal levels

6 Results

Some comparison benchmarks were done to compare the performance of the
CPU based algorithm to the new GPU accelerated one. The video used was
a HDV video with a resolution of 1280x720 pixels. The reconstruction was
done with uniform weights.

Figure 10 shows the results of a benchmark run on a notebook for differ-
ent numbers of temporal and spatial levels. The low performance notebook
graphics chip, a GeForce Go 7600, is the limiting factor in this case and
causes the performance degradation for the spatial filtering. Temporal fil-
tering, which only uses light-weight shaders, exhibits a relatively stable per-
formance until the amount of memory required to store the pyramid images
exceeds the graphics memory (256 MB) with 5 levels.

In Figure 11, the results of a desktop system with a fast GeForce 8800
GT are shown. The limiting factor in this case is memory transfer bandwith,
which limits the framerate to about 36 fps, even without any filtering. Again,
for temporal filtering, the performance starts to drop when the graphics card
memory (512 MB) is filled up.
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The system in Figure 11 performs much better than the system in Figure
12, albeit having a much slower GPU. This again shows the heavy dependence
on memory transfer bandwith. The performance breakdown at five temporal
levels is clearly visible in this case.

All tested systems, except the notebook system with a particulary slow
GPU, were memory transfer bandwith limited. This was the case with the
GPU algorithm, as well as the CPU version. Note that the CPU version does
not exploit multiple cores. However, because of the memory dependence, it
is expected to perform similar with a multithreaded algorithm.

An average performance gain factor of about 2.1 and 3.7 was measured
for four levels of spatial and temporal filtering, respectively. The GPU could
be successfully employed to perform full spatio-temporal Laplacian filtering
of high resolution videos in realtime.

Spatial filtering Temporal filtering
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Figure 10: Performance on an Intel Core Duo (2x1.66 GHz), 1GB RAM,
Nvidia GeForce Go 7600 with 256 MB RAM; 1280x720 MPEG2
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Figure 11: Performance on an AMD Athlon 64 3700+, 1 GB RAM, Nvidia
GeForce 8800 GT with 512 MB RAM; 1280x720 MPEG2
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Figure 12: Performance on an Intel Core 2 Quad, 2 GB RAM, Nvidia GeForce
8600 GT with 512 MB RAM; 1280x720 MPEG2
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