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Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract. We investigate the contribution of local spatio-temporal vari-
ation of image intensity to saliency. To measure different types of vari-
ation, we use the geometrical invariants of the structure tensor. With a
video represented in spatial axes x and y and temporal axis t, the n-
dimensional structure tensor can be evaluated for different combinations
of axes (2D and 3D) and also for the (degenerate) case of only one axis.
The resulting features are evaluated on several spatio-temporal scales in
terms of how well they can predict eye movements on complex videos.
We find that a 3D structure tensor is optimal: the most predictive re-
gions of a movie are those where intensity changes along all spatial and
temporal directions. Among two-dimensional variations, the axis pair yt,
which is sensitive to horizontal translation, outperforms xy and xt by a
large margin, and is even superior in prediction to two baseline models
of bottom-up saliency.
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1 Introduction

Visual attention, the selective processing of visual information, is an impor-
tant component of biologically-inspired machine vision systems. Computational
models of attention have proven to be invaluable in identifying points of in-
terest within a scene and e.g., through that, enabling the otherwise time- and
resource-consuming image processing to focus only on these potentially relevant
scene locations.

In human vision, the extent to which a certain scene region captures the view-
ers’ attention, i.e. its level of salience, is determined by two different kinds of
mechanisms. On the one hand, basic visual properties, such as motion, contrast,
and colour influence where we direct our gaze. On the other hand, top-down
knowledge, i.e. our goals and interests, also modulate attentional selection. The
relative contribution of the two mechanisms is still under debate; however, due
to the involuntary and computationally more tractable nature of stimulus-driven
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attention, much work has focused on the bottom-up factors that drive eye move-
ments.

Of major importance was the recognition that scene statistics at the centre
of fixation differ significantly from those at random, control locations. Studies
have shown that attended regions have high luminance-contrast [6, 7], and found
regularities in the higher-order statistics (e.g. high edge density [5]). Knowledge
about such distinct image properties has been then used to build models of
saliency that successfully predict human fixations in natural scenes, e.g. [4, 2, 9].

Another key finding is related to the region’s degree of spatial (and temporal)
variance. It shows for images that intrinsically two-dimensional scene structures
(i.e. of higher spatial variance), such as edges and curved lines, have a higher
probability to be fixated [5]. In previous work, we could demonstrate for videos
that features that change over space and in time also tend to be more salient.
We found that the predictability of eye movements correlates with the intrinsic
dimension: the higher the intrinsic dimension the higher the predictive power [8,
1].

In the present study, we extend our previous analysis by quantifying the
contribution of local spatio-temporal variation of image intensity to saliency. To
measure different kinds of variation, we compute, for a set of natural outdoor
videos, invariants of the n-dimensional structure tensor (1 ≤ n ≤ 3). Consid-
ering a video to be represented in spatial axes (x, y) and temporal axis t, the
nD structure tensor is evaluated for different combinations of axes (2D and 3D)
and also for the (degenerate) case of only one axis. To obtain a simple measure
of bottom-up saliency, we use the symmetric invariants of the structure tensors,
which we compute on several spatio-temporal scales. Finally, the resulting sim-
ple representations are evaluated and compared with two prototypical saliency
models of dynamic scenes in terms of how well they can predict eye movements
on videos.

2 Invariants of the n-dimensional Structure Tensor

It has been previously shown that eye movement predictability correlates with
the intrinsic dimension (iD), i.e. with the number of spatio-temporal directions
in which the video changes locally. A classical method to estimate the intrinsic
dimension is to consider the rank of the structure tensor. Given a grayscale
video f : R3 → R, the structure tensor captures signal variations based on the
spatial and temporal derivatives at each pixel. For three-dimensional data, i.e.
the spatio-temporal volume of the video, usually a three-dimensional structure
tensor is defined. However, on subspaces of the video volume (e.g. combinations
of two axes, or even considering the degenerate case of a single axis only) 1D or
2D structure tensors can be constructed.

Here, we formalize the problem for the two-dimensional structure tensor J2,
considering only the vertical spatial dimension y and the temporal dimension
t. The generalization of the formulas for the n-dimensional case (1 ≤ n ≤ 3) is
given in Table 1. For the axis combination yt J2 is defined as
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J2 = ω(y, t) ∗

(

f2

y fyft
fyft f2

t

)

, (1)

where ω(y, t) is a Gaussian smoothing function and fy and ft stand for the
first order partial derivatives δf/δy and δf/δt. The scale on which the structure
tensor is evaluated depends on the bandwidth of the filter kernel ω(y, t) and
the derivative operators. Therefore, computations are performed on a spatio-
temporal multiresolution pyramid.

The intrinsic dimension is, in practice, obtained from the symmetric invari-
ants of the structure tensor:

H = 1/2 trace(J2) = λ1 + λ2

K = |J2| = λ1λ2

(2)

where λi denote the eigenvalues of J2. Regions where H > 0 are at least intrin-
sically one-dimensional (iD ≥ 1), e.g. non-vertical stationary edges, vertically
translating edges, and uniform regions that change in time, whereas K > 0 in-
dicates an i2D feature such as yt corners (changing motion) and structures that
appear or disappear in yt, which correspond to non-vertical translation.

Table 1. n-dimensional structure tensors and their invariants, which correspond to
the minimum intrinsic dimension (iD) of a region. Invariants that encode features of
higher iD are in general better predictors of eye movements; therefore, they are used
for further analysis (these are marked with a box).

n nD Structure Tensor Invariants (eigendecomposition of Jn)

1 J1 = ω(u) ∗ f2

u H = λ1 (iD = 1)

u ∈ {x, y, t}

2
J2 = ω(u, v) ∗

(

f2

u fufv
fufv f2

v

)

H = λ1 + λ2 (iD ≥ 1)

K = λ1λ2 (iD = 2)

u, v ∈ {x, y, t}, u 6= v

3 J3 = ω(x, y, t) ∗





f2

x fxfy fxft
fxfy f2

y fyft
fxft fyft f2

t





H = λ1 + λ2 + λ3 (iD ≥ 1)
S = λ1λ2 + λ1λ3 + λ2λ3 (iD ≥ 2)

K = λ1λ2λ3 (iD = 3)

3 Prediction of Eye Movements with Tensor-based

Approaches

Having reviewed simple tensor-based video representations that characterize dif-
ferent types of spatio-temporal changes, we now quantitatively compare their
power in predicting eye movements on complex natural videos.
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Fig. 1. Top row (from left): H of J1 computed along the individual axes x, y, and t;
original frame also shown. Bottom row (from left): K of J2 computed along the axes
xy, xt, and yt; below the original image: K of J3 along all three axes.

For our evaluation, we used a public data set1 [3] that consists of 18 high-
resolution movie clips (1280 by 720 pixels, 29.97 fps, about 20 s duration each) of
natural outdoor scenes, and the gaze data of 54 human subjects freely viewing
these videos. From the raw gaze data, collected with an Eye Link II eye tracker
at 250Hz, about 40,000 saccades were extracted. All movies were cropped to
the same size along the spatial axes (preserving the central 600 by 600 pixels),
to make the resulting space-time cubes rotation-invariant with regard to size
(because movies had 600 frames). The total number of saccades that remained
after the cropping was 24,370.

Invariants that encode features of higher intrinsic dimensionality were shown
to be better predictors of eye movements; therefore, here only these were con-
sidered (see Table 1). For each video, we computed the invariants of the tensors
J1, J2, and J3 along all possible dimensions/combinations of dimensions. See
Figure 1 for still shots from a movie and the corresponding invariants. The above
invariants were computed on each scale of an anisotropic spatio-temporal mul-
tiresolution pyramid with S = 2 spatial and T = 2 temporal scales, in which
each spatial pyramid was decomposed further into its temporal bands.

To determine how well the different representations can predict the saliency
level of video regions, next, we labelled areas in the videos as salient and non-
salient. The class of salient locations is well defined by the human fixations
(more precisely by the saccade landing points). To obtain the non-salient class,
a number of biases need to be addressed (e.g. the central fixation bias, the
tendency of observers to fixate more in the centre of the display). A common
approach in the human vision literature, which we also follow here, is to shuffle

1 http://www.inb.uni-luebeck.de/tools-demos/gaze/
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scanpaths: the non-attended locations of a movie are chosen using randomly
selected scanpaths from the other movies.

For eye movement prediction, instead of using directly the feature response
at these locations, one must consider a spatio-temporal neighbourhood centred
around fixations. This is partly accounted for by the image pyramid; however,
we further consider a spatial window (of 32 pixels, i.e. about 1.2 deg, on the
highest pyramid level), as uncertainty in the measurements is higher in the spa-
tial domain. On each pyramid level, we compute the window’s energy, i.e. the
root-mean-square of the feature values (i.e. invariants) in the window. Thus, we
obtain for each salient and non-salient video location a low-dimensional vector
of feature energies computed on the different pyramid levels (procedure detailed
in [8]).

Finally, the predictive power of the different representations is assessed
by evaluating (through ROC analysis) the performance of one-dimensional
maximum-likelihood classifiers when the feature energies from the single pyra-
mid levels are used as inputs to the decision algorithm. In Table 2, we report
average ROC scores (over the 18 movies) obtained for the “most predictive”
scale (i.e. the pyramid level with the highest average ROC score).

For comparison, the saliency maps computed by two state-of-the-art algo-
rithms for dynamic scenes (Itti & Koch and SUNDAy [4, 9]) are treated as
maximum-likelihood classifiers for discriminating between fixated and not fix-
ated video regions. By thresholding these maps, movie regions above the thresh-
old are classified as salient. A systematic variation of the threshold parameter
gives us a single ROC curve per movie and model. The averaged ROC scores
over all videos are reported in Table 2.

Table 2. Average ROC scores of the different models and representations.

Model ROC score Model ROC score Model ROC score

x 0.621 xy 0.639 J3(xyt) 0.673
J1 y 0.617 J2 xt 0.637 Itti & Koch 0.644

t 0.623 yt 0.656 SUNDAy 0.635

4 Discussion and Conclusion

With an average ROC score of 0.673 the three-dimensional structure tensor J3 is
optimal, suggesting that the most predictive regions of a movie are indeed those
where intensity varies along all spatial and temporal dimensions. Surprisingly,
the second best predictor operates on the axis pair yt; this predictor is sensitive
for horizontal translations, which are most common in typical natural scenes. J2

evaluated on the axes yt outperforms xy and xt by a large margin (with an ROC
score of 0.656 compared to 0.639 and 0.637, respectively), and is even superior
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to the two baseline models with ROC scores 0.644 (Itti & Koch) and 0.635
(SUNDAy), which incorporate a number of different features such as colour,
contrast, and orientation. Although one-dimensional variations perform worst
(with J1 along the vertical axis giving the lowest score – 0.617), their average
prediction rate is significantly higher than chance (ROC score of 0.5).

Our results can be used to choose efficient active vision strategies. Under
the assumption that the human visual system is near-perfectly optimized for
natural environments, the spatio-temporal structure tensor J3 thus picks the
most informative regions. However, with our data, it is now also possible to
choose which dimension should be sacrificed for faster computation in resource-
limited systems, e.g. in an embedded real-time module of a robot with active
vision sensors: for natural environments, the axis pair yt is more informative
than xy or xt.

Future work will investigate the predictive power of other tensor represen-
tations, such as the Hessian matrix or the energy tensor, and implement the
proposed simple saliency models for a real-time system attached to a camera.
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