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Based on the principle of efficient coding, we present a theoretical framework for how to categorize the
basic types of changes that can occur in a spatio-temporal signal. First, theoretical results for the problem
of estimating multiple transparent motions are reviewed. Then, confidence measures for the presence of
multiple motions are used to derive a basic alphabet of local signal variation that includes motion layers.
To better understand and visualize this alphabet, a representation of motions in the projective plane is
used. A further, practical contribution is an interactive tool that allows generating multiple motion pat-
terns and displaying them in various apertures. In our framework, we can explain some well-known
results on coherent motion and a few more complex perceptual phenomena such as the 2D–1D entrain-
ment effect, but the focus of this paper is on the methods. Our working hypothesis is that efficient rep-
resentations can be obtained by suppressing all the redundancies that arise if the visual input does not
change in a particular direction, or a set of directions. Finally, we assume that human eye movements will
tend to avoid the redundant parts of the visual input and report results where our framework has been
used to obtain very good predictions of eye movements made on overlaid natural videos.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction (Field, 1987; Olshausen & Field, 1996; Zetzsche, Barth, & Weg-
Motion selectivity is a key feature of visual processing and has
been studied extensively. However, the motion patterns that occur
in natural scenes are more complex than the state-of-the art mo-
tion models. This has been acknowledged in the computer vision
literature; nevertheless, only a few selected problems related to
more complex motion patterns have been solved (see Jähne, Mes-
ter, Barth, & Scharr (2007) for a review).

A particular case of more complex motion patterns is that of
multiple overlaid motions that occur in natural environments
due to transparencies, reflections, and occlusions. We will here
consider the transparent superposition of motions. Our results on
multiple motions have been presented in a number of technical
publications and the state of the art is presented there (Aach, Mota,
Stuke, Mühlich, & Barth, 2006; Barth, Stuke, Aach, & Mota, 2003;
Mota, Stuke, & Barth, 2001). Here we summarize the results and
apply them in the context of visual processing and efficient coding
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mann, 1993).
The problem of motion estimation is always linked to the prob-

lem of motion detection. This is because the assumptions under
which the motion parameters can be correctly estimated are rarely
fulfilled in real dynamic scenes. Therefore, a correct decision on
what local or global motion model to use is often more important
and difficult than the estimation of the motion parameters (Bergen,
Burt, Hingorani, & Peleg, 1992, 1993). This issue relates to the need
of having a basic categorization of spatio-temporal visual patterns
as part of a ‘‘visual alphabet” of low- and mid-level vision (Adelson
& Bergen, 1991). As an early and simple example, one might con-
sider the barber-pole illusion: the perceived motion of lines is
determined by the motion of terminators because there the confi-
dence for a valid motion model is higher. This perceptual phenom-
enon is usually explained by invoking the aperture problem. In this
paper we will extend such reasoning to multiple motion layers and
higher-order ‘‘aperture problems”.

As we shall see, the strength of our approach lies in providing
not only new solutions for the multiple motion parameters, but
also good confidence measures for the selection of an appropriate
motion model. These confidence measures are closely related to
more general aspects of multidimensional signal processing and
efficient coding as presented, for example, in Barth and Watson
(2000) and Zetzsche and Barth (1990). Some of these aspects will
be briefly reviewed in the section on motion types.
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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Multiple transparent motions have often been used to probe the
visual system – see Braddick and Qian (2001) for an overview. As
an early result, it was reported that when the number of moving
patterns is increased beyond two, subjects are no longer able to
perceive all the patterns simultaneously (Mulligan, 1992, 1993).
Later experiments showed that up to three motions can be de-
tected (Andrews & Schluppeck, 2000) if their directional separation
is sufficiently large and that two motions are hard to detect if the
separation is small (Mota, Dorr, Stuke, & Barth, 2004).

Our key results will appear in a table (Table 2), where we will
give a complete description of the different ways in which a mul-
tidimensional signal can be constant and thus contain redundancy.
By that we provide a theoretical framework for dealing with mul-
tidimensional signal variation that can be applied, for example, to
multiple motions but might also open a new perspective on the is-
sue of efficient visual coding.

To better visualize and synthesize complex motion patterns, we
use the projective-plane representation of motion and offer an
interactive graphical tool for multiple-motion synthesis that can
be used to illustrate, for example, the different types of overlaid
motions in Table 2.

Finally, we present an experiment in which we have recorded
eye movements of subjects who were viewing overlaid movies,
and we show how our framework can be used to obtain very good
predictions of the eye movements.

The paper is structured as follows. For didactical purpose, we first
treat the case of multiple motions of one-dimensional spatial objects
(multiple motions in x and t) and then expand this to the more rele-
vant case of (x,y, t) motions. In the section on motion types, we gen-
eralize our results such as to deal with different combinations of
multiple motions, and define a complete scheme of signal classifica-
tion based on the degrees of freedom that a signal is using. We then
present our approach to multiple-motion synthesis and show a dem-
onstration based on the interactive tool. Next, we describe an exper-
iment in which we investigated how eye movements are influenced
by overlays and how well they can be predicted. Here, we will pro-
vide step-by-step directions how our framework can be used in prac-
tice without references to the details of the mathematical
background, which are given in an appendix. Some readers might
find it useful to start with our interactive tool described in Appendix
B and available at http://www.ebarth.de/demos/ppmotion and use
it as a companion throughout the paper.
2. Multiple motions in (x,t)

For didactical purpose, we first introduce the concept of multi-
ple motions for the case of only one spatial dimension x. Suppose
Fig. 1. One (left) and two
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we are dealing with a one-dimensional pattern of light intensity
f(x) that translates in time with speed u. We observe the signal

f ðx; tÞ ¼ gðx� tuÞ ð1Þ

To estimate the motion parameter u, we can use the well-
known constraint

ufx þ ft ¼ 0 ð2Þ

that formalizes the observation that image intensities remain con-
stant in the direction of motion (see left panel of Fig. 1). Indices de-
note partial derivatives. Note that the above constraint is obtained
by applying to the left and right side of Eq. (1) an operation (the
derivative along direction (u,1), i.e., along the motion vector in
homogeneous coordinates) that will cause the right part, i.e., the
unknown g, to vanish. Since the constraint is linear, we can use lin-
ear regression methods to estimate the parameter u based on the
partial derivatives (estimated at a number of locations for which
the constraint in Eq. (2) is supposed to hold) of the known function
f. As a consequence, the vector (u,1) will be the eigenvector to the
smallest eigenvalue of the structure tensor

J ¼ x �
f 2
x fxft

fxft f 2
t

 !
; ð3Þ

which consists of products of partial derivatives that are locally
averaged (pooled) by convolution (denoted by ‘‘�”) with the kernel
x.

If exactly one eigenvalue of J is zero (the second eigenvalue will
then be positive)

u ¼ � J12

J11
¼ � J12

J22
¼ x � ðfxftÞ

x � ðf 2
x Þ

; ð4Þ

where J12,. . . are the components of the structure tensor. Our mo-
tion model is only appropriate if the rank of J equals one, and we
will extend this observation in the section on confidence measures.

Note that the structure tensor is constructed to deal with noise
by assuming that the left part of Eq. (2) is not exactly equal to zero,
and then searching for the velocity u that minimizes a weighted
sum of squares of ufx + ft (standard least-squares regression). If
the assumption that the term ufx + ft is small in a local neighbor-
hood (same as assuming a translational motion) is not true, the
rank of J will not be equal to one. In the remainder of the paper
we will extend these observations to more motions and more
dimensions.

Now suppose that the observed intensity signal f is the additive
superposition of two moving patterns (see right panel of Fig. 1):

f ðx; tÞ ¼ g1ðx� tuÞ þ g2ðx� tvÞ: ð5Þ
(right) (x, t) motions.

motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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In this case, we observe f and need to estimate u and v. To obtain
a constraint for one of the motions we proceed as above, i.e., we
cause g1 and g2 to vanish. The derivative operator which causes
g1 and g2 to vanish (concatenated derivatives in the directions of
the two motions) yields the constraint

uvfxx þ ðuþ vÞfxt þ ftt ¼ 0: ð6Þ

Note that the above constraint for two motions is nonlinear
while the one for one motion was linear. We now linearize the
two-motion constraint by introducing the mixed-motion parame-
ters vector c = (a,b,1)T with components

a ¼ uv ;
b ¼ uþ v :

ð7Þ

Eq. (6) now reads

afxx þ bfxt þ ftt ¼ 0: ð8Þ

and, being linear, can be solved for the mixed motion parameters by
regression as in the case of one motion above. The solution obtained
for c will thus be the eigenvector related to the minimal eigenvalue
of a generalized structure tensor

J2 ¼ x �
f 2
xx fxxfxt fxxftt ;

fxxfxt f 2
xt fxtftt ;

fxxftt fxtftt f 2
tt :

0
B@

1
CA: ð9Þ

However, we now need to recover the motion parameters u, v
from the mixed-motion parameters in c. This is achieved by
observing that

uv ¼ a;

uþ v ¼ b:
ð10Þ

Hence, the motion parameters are simply the roots of the
polynomial

Q 2ðxÞ ¼ x2 � bxþ a:

This concludes the explanation of our strategy for solving the
problem of multiple motions in the general case. Note that the
above solution is a way of linearizing the problem that becomes
linear in the mixed-motion parameters.

3. Multiple motions in (x,y, t)

We now consider the realistic case of two spatial dimensions
x = (x,y). We will restrict the presentation to multiple transparent
motions that are superimposed additively. The extension of the
models and results to multiplicative layers is straightforward.
The more general case of both transparent and occluded motions
has been treated in Barth et al. (2003). Suppose that an image se-
quence f is the overlaid superposition of two image layers moving
with constant but different velocities u, v respectively:

f ðx; tÞ ¼ g1ðx� tuÞ þ g2ðx� tvÞ: ð11Þ

By applying the operator a(u)a(v) to f and expanding we obtain
a constraint equation for transparent motion (Shizawa & Mase,
1990):

aðuÞaðvÞf ¼ ðuxvxÞfxx þ ðuyvyÞfyy þ ðuxvy þ uyvxÞfxy þ ðux

þ vxÞfxt þ ðuy þ vyÞfyt þ ftt

¼ 0: ð12Þ

We linearize the above equation by introducing the mixed mo-
tion parameters vector c = (cxx,cyy,cxy,cxt,cyt,ctt)T with components
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
cxx ¼ uxvx; cyy ¼ uyvy; cxy ¼ uxvy þ uyvx;

cxt ¼ ux þ vx; cyt ¼ uy þ vy; ctt ¼ 1:
ð13Þ

Eq. (12) now reads

cxxfxx þ cyyfyy þ cxyfxy þ cxtfxt þ cytfyt þ cttftt ¼ 0 ð14Þ

and can be solved for the mixed-motion parameters by regression
as shown above. The best estimator for the mixed-parameters vec-
tor c is therefore the eigenvector related to the minimal eigenvalue
of the generalized structure tensor

J2 ¼ x � ðLLTÞ
L ¼ ðfxx; fyy; fxy; fxt; fyt; fttÞT ;

ð15Þ

where x(x,y, t) is again a convolution kernel. This eigenvector can
be estimated by principal component analysis or by using the min-
ors of J2 (see Appendix A). What remains is to recover the motion
vectors u, v from the mixed-motion parameters. This is achieved
by reinterpreting them as complex numbers, i.e.,

u ¼ ux þ juy; v ¼ vx þ jvy; ð16Þ

and observing that

uv ¼ cxx � cyy þ jcxy ¼ A0;

uþ v ¼ cxt þ jcyt ¼ A1:
ð17Þ

Hence, the motion vectors are simply the roots of the complex
polynomial

Q2ðzÞ ¼ z2 � A1zþ A0:

A generalization for the case of an arbitrary number of N mo-
tions and the definition of the generalized structure tensor JN for
N motions is given in Mota et al. (2001) and not further elaborated
here.

4. Motion types

We will not further consider the problem of estimating multiple
motions, but we needed to introduce the above framework to
understand how the generalized structure tensors arise. We will
now use these tensors and their invariants to present a complete
classification scheme for different combinations of multiple mo-
tions that describe different types of redundancies in the signal.
We start with the concept of intrinsic dimension, which defines
the dimension of signal-energy subspaces, and extend it to differ-
ent combinations of such subspaces.

4.1. Intrinsic dimension

The intrinsic dimension (Zetzsche & Barth, 1990) describes how
many of the degrees of freedom of a signal are used within a local
neighborhood (see Table 1). If a signal is completely constant, e.g.,
a uniform wall, the intrinsic dimension is zero. Straight edges and
all kinds of stationary gratings have intrinsic dimension one. Sta-
tionary or translated corners or line ends then are i2D and transient
corners are i3D. We will refer to a signal with intrinsic dimension n
as an inD signal or an inD feature.

Images and image sequences can be reconstructed from only
those regions where the intrinsic dimension is larger than one
(Mota & Barth, 2000), which means that i0D and i1D signals are
redundant. Moreover, the statistics of natural scenes reveal that
signals with low intrinsic dimension occur more frequently than
signals with high intrinsic dimension (Zetzsche et al., 1993). This
combination of geometrically proven uniqueness and statistically
measured low probability of occurrence makes signals with higher
intrinsic dimension an efficient representation. The resulting rep-
resentation will be sparse (due to the above mentioned statistics),
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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Table 1
Intrinsic dimension in 3D. The parameters a, b, c,. . . define the directions in which the
signal does not change.

Intrinsic
dimension

Description Constraint Signal
energy

0 Constant in all directions f(x,y, t) = c Point
1 Constant in two directions f(x,y, t) = g(ax + by + ct) Line
2 Constant in one direction f(x,y, t) = g(a1x + b1y

+ c1t,a2x + b2y + c2t)
Plane

3 No constant direction None Volume

Table 2
Basic dynamic patterns (left column) that have intrinsic dimensions indicated in the
third column and that correspond to the ranks of the generalized structure tensors for
N = 1, 2, and 3 given in the right columns. Colors are used to illustrate the cases of
generalized aperture problem (red), translation (green, indicating a proper motion
model), high (blue), and low (orange) complexity. MGs are moving patterns that are
spatially 1D, e.g., moving gratings. MDPs are moving patterns that are spatially 2D,
e.g., moving dots. Transient dots stands for the class of signals that show no constant
direction, the simplest example being dots that appear or disappear. The table
summarizes all possible combinations of up to three moving patterns (but for the
trivial possibility of adding 0D patterns to all combinations) and shows that these
patterns can be distinguished in terms of the ranks of the structure tensors.

4 E. Barth et al. / Vision Research xxx (2010) xxx–xxx
and will also minimize the loss of information (due to the unique-
ness theorem). Indeed, recent results obtained with sparse coding
and overcomplete bases indicate that i2D operators emerge as non-
linear filters (Labusch, Barth, & Martinetz, 2009; Olshausen, 2009).

It then seems a straightforward hypothesis that visual process-
ing should exploit this potential efficiency, and suppress signals
with lower intrinsic dimension. This simple hypothesis suffices to
explain the occurrence of lateral inhibition (i0D signals are sup-
pressed), end-stopping (i1D signals are suppressed), and motion
selectivity (Barth & Watson, 2000).

It is useful to consider the Fourier transform and energy distri-
butions of signals with different intrinsic dimensions. The problem
of determining the intrinsic dimension is then equivalent to the
problem of determining whether the energy of the signal is re-
stricted to a certain subspace, e.g., a plane (within a volume). A
well-known result is that the energy of a rigid-motion signal is re-
stricted to a plane (Watson & Ahumada, 1983). In case of multiple
motions we are dealing with the problem of detecting that the en-
ergy is on multiple planes, and of estimating the parameters of the
planes. In general, however, different combinations of different
kinds of subspaces are possible, e.g., of planes and lines if a moving
dot pattern and a moving grating are overlaid.

4.2. Intrinsic dimension and motion

Image regions that are i2D (e.g., corners, line ends) are not only
the most informative but also the only regions where motion can
be estimated correctly, because i1D signals suffer from the aper-
ture problem. The early experiments by Wallach (see Wuerger,
Shapley, & Rubin, 1996) demonstrate that the perceived direction
of motion is dominated by the motion of the i2D regions (the so-
called terminators). This strategy has been confirmed by neuro-
physiological data showing that neurons in area MT of the maca-
que prefer i2D motion signals (Pack, Gartland, & Born, 2004), and
that i2D selective end-stopped neurons in the primary visual areas
seem to be involved in avoiding the aperture problem (Pack, Liv-
ingstone, Duffy, & Born, 2003) – see Born and Bradley (2005) and
Rust et al. (2006) for review papers on the role of MT neurons.

4.3. Categorization of motion types

The classification according to the intrinsic dimension has the
following limitation. A signal with intrinsic dimension three may
have an energy distributed not in a volume but in multiple planes,
or maybe in a combination of multiple planes and lines. One might
refer to such cases as fractional intrinsic dimensions, where the
intrinsic dimension is not two but also not really three. An interest-
ing special case is that of multiple orientations in images (Aach
et al., 2006). The more general problem of how to detect and esti-
mate multiple orientations in multidimensional signals was solved
only recently (Stuke, Barth, & Mota, 2006).

As we shall see, the major benefit of the generalized structure
tensor is that it provides a natural categorization of the visual in-
put, or any three-dimensional signal, in terms of its complexity
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
and redundancy. The rank of the tensor J1 is known to correspond
to the intrinsic dimension, and it thus follows from (Mota & Barth,
2000) that signals with a rank of J1 less than two are redundant.
Although signal categorization by the rank of J1 has proven useful
in many technical applications, it should be noted that the concept
of intrinsic dimension is more general, and that the eigenvalue
analysis of J1 is just one specific way of determining the intrinsic
dimension. Nevertheless, for simplicity, it is a major focus of this
work to provide a categorization of dynamic visual patterns in
terms of the ranks of the tensors JN, with N = 1, 2, 3.

Fortunately, although hard to derive, the results can easily be
presented as shown in Table 2. We here restrict the patterns in Ta-
ble 2 to overlaid motions that are defined as the additive superpo-
sition of elementary patterns that are either 1D or 2D spatial
patterns. Except for the 3D case (last line in the table), these pat-
terns move with constant velocity. 1D patterns can thus be, for
example, moving gratings and straight lines, whereas 2D patterns
can be, for example, moving dots or moving noise patterns. 3D pat-
terns are, for example, dynamic noise, transient dots, or transient
corners. Note that within the traditional theory of only one motion
(as represented by the tensor J1), one cannot distinguish between
the motion of two 1D patterns (e.g., a plaid) and the motion of
one 2D pattern (dot, corner, or noise) because the rank of J1 is
the same in the two cases. These two types of patterns differ, how-
ever, in the ranks of both J2 and J3.

Finally, we should note that the signal types presented in Table 2
form a complete set, i.e., the table contains all possible combina-
tions of up to three motion layers (other combinations of ranks
cannot occur). The results summarized in Table 2 therefore make
a contribution to the alphabet of how to ‘‘measure stuff” (Adelson
& Bergen, 1991).
4.4. Confidence measures

We now address the question of how to derive confidence mea-
sures for the different types of motions in the above table. As
shown in the table, the different types of motion patterns can be
classified in terms of the rank of the structure tensors. A theoreti-
cally obvious choice would be to determine the rank based on an
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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eigenvalue analysis of the tensor. However, confidence measures
for the different ranks can also be defined based on the invariants
of the structure tensors:

H1 ¼ 1=3 trace ðJ1Þ ¼ k1 þ k2 þ k3;

S1 ¼ jM11j þ jM22j þ jM33j ¼ k1k2 þ k2k3 þ k1k3;

K1 ¼ jJ1j ¼ k1k2k3;

ð18Þ

J1 is the structure tensor for one (x,y, t) motion and is defined in Eq.
(21). The ki are the eigenvalues of the structure tensor, but note that
we might not need the eigenvalues to determine the rank of the
tensor. The rank can be determined in terms of the invariants H1,
S1, and K1. H1 is the trace of the structure tensor J1, i.e., the invariant
H1 results from the sum of the basic measurements (eigenvalues,
i.e., variations in main directions). S1 is the sum of the minors
(jM11j,. . ., the minors of J1 are determinants of sub-matrices, see
Appendix A). Accordingly, S1 is a sum of pairwise products of eigen-
values. Finally, K1 is the determinant, i.e., the product of all eigen-
values. Note that the above invariants are nonlinear combinations
of linear filters.

The invariants can be used in a straightforward way. If K1 – 0,
the rank is three, so K1 can quantify the likelihood of having a
full-rank tensor (blue entries in Table 2). If S1 – 0 the rank is at
least two. As a consequence, the green entries in the table (well-
defined motions) are defined by having a large S1 and a small K1.
If H1 – 0 the rank is at least one. Details on how to normalize the
invariants when comparing them can be found in Mota et al.
(2001), see also Section 7.

The reddish fields in the table (inconsistent motions) are de-
fined by zero values of S1 and K1. Remember that those features
in a movie where S1 and K1 (of J1) are zero, are not only those fea-
tures where motion cannot be determined but also those regions
that are redundant (see intrinsic dimension above). This is why it
would make sense for any vision system to have estimates of the
invariants S1 and K1. In other words, a system that represents mov-
ies in terms of H1 will suppress (not represent) all those visual fea-
tures that are i0D, i.e., constant in all directions. S1 will filter out
from the representation i0D and i1D features, and K1 will suppress
i0D, i1D, and i2D features. So, when moving from H-like to S-like
and K-like representations, the degree of sparsification will in-
crease since the signals with three, two, and one constant direc-
tions will be suppressed. However, as shown in Table 2, the
invariants H1, S1, and K1 cannot differentiate between the different
types of motion superpositions. For example, the linear superposi-
tion of two i1D signals cannot be differentiated from a single i2D
signal, and the superposition of two i2D signals cannot be distin-
guished from an i3D signal.

These problems can be solved by using the generalized invari-
ants H2, H3, K2, and K3 of J2 and J3, which are defined as in Eq.
(18) (but for a higher number of eigenvalues). The invariants of
type S of J2 and J3 are defined similarly. S22 and S32 are defined as
the sum over all possible products (15 in case of J2) of pairs of
eigenvalues. The higher-order invariants are defined as sums of
products of triples, quadruples, . . . of the eigenvalues. Accordingly,
S23 is the sum over all 20 products of triples of eigenvalues of J2, S24

the sum over all 15 products of four eigenvalues, and S25 the sum
over all six products of five eigenvalues. Overall, the invariants are
defined in terms of

PQ
structures, with H and K being the extreme

cases of only
P

(sum of all eigenvalues, no product) and only
Q

(product of all eigenvalues, no summation), respectively. Note that
in case of one-dimensional signals the structure tensor J1 is degen-
erated and no RP structures arise (we have only H), and in case of
two-dimensional signals only the two extreme cases of H and K ex-
ist (no S-type invariants).

When comparing K1 and K2 by looking at the 4th and 5th col-
umns of Table 2, we see than K2 can suppress patterns that result
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
from superpositions of patterns with low intrinsic dimension. For
example, in case of a 2D + 2D transparent motion (row 9) K1 is dif-
ferent from zero but K2 can ‘‘see” this higher-order redundancy and
is equal to zero (a response in K2 would require a rank of J2 of six).
However, once we are looking at motions of more than two i2D
patterns, we need K3 to ‘‘see” and suppress that redundancy. Note
that filtering out i0D signals is simple and can be done with linear
systems. But as we move on to suppress increasingly complex
redundancies, we therefore need increasingly complex nonlineari-
ties. The invariants of the generalized structure tensors can tell us
what kind of nonlinearities are required. The resulting operators
can be understood as a sandwich structure of two linear and two
nonlinear stages that can be summarized as follows: (i) linear spa-
tio-temporal filtering (derivatives fxx, . . . ), (ii) nonlinear stage
(product terms, e.g., fxxfyy in J2), (iii) linear spatio-temporal pooling
(convolution with the kernel x), (iv) nonlinear stage (defined by
determinants or sum of minors, i.e., product terms again).
5. Implementation of derivatives and filters

This section discusses the relationship between derivatives and
visual filters and thereby addresses critical aspects of the differen-
tial approach. It can be skipped by those not interested in the
implementation issues.

Differential approaches are often discussed as being sensitive to
noise. This is particularly relevant for our results on multiple mo-
tions since the order of differentiation increases with the number
of motions. Therefore we now present two methods that are useful
to overcome such problems. In our simulations in Section 7, how-
ever, we have used standard differences of Gaussians as derivatives
and obtained very good prediction results with noisy natural
movies.
5.1. Prefiltering

In Mota et al. (2001) solutions for multiple motions were de-
rived by showing that the differential results still hold for any type
of linear pre-filtering. This implies that the shape of the differential
filter can be influenced to a large degree and thus adapted such as
to improve sensitivity to noise. For the case of one motion, this
property has been used in Srinivasan (1990).
5.2. Generalized derivatives

As an important consequence of the above-mentioned result,
one can use fairly general filter functions instead of the derivatives.
Consider the Fourier transform of the derivative kernels (X, Y, and T
are the Fourier variables corresponding to x, y, and t respectively):

@j@l@m

@xj@yl@tm
) ð�iÞjlmXjYlTm: ð19Þ

A major weakness of calculus is that it cannot separate the sym-
metry of the derivative (i.e., whether �i to the power, say, jml in
the above equation equals �i or 1) from the shape of the filter
(i.e., the actual value of the product jml) which determines the
steepness of the filter function and thus the sensitivity to noise.
Note, however, that the results of motion estimation do not depend
on the shape of the filter function because the shape can be manip-
ulated by pre-filtering. For example, if we had a filter X4 as a
fourth-order derivative with respect to x, we could use a pre-filter
X�3 and thus end up filtering with u as an estimate of the deriva-
tive. The latter filter would be much less sensitive to noise since
it would be much less a high-pass filter.
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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6. Synthesis of multiple motions

Tables 1 and 2 are useful for categorizing basic properties of
multidimensional signals in general and certain motion patterns
in particular. In order to better exemplify the different motion pat-
terns we now turn to the problem of motion synthesis. The study of
motion patterns has profited from looking at Fourier correspon-
dences, because then motion could be visualized as a plane in
the transform domain (Watson & Ahumada, 1983). Multiple mo-
tions correspond to multiple such planes and the motion of a plaid
pattern is said to be determined by the two lines in the transform
domain (which correspond to the two 1D moving gratings) that de-
fine a plane. But this plane is not the only way to fit the two lines;
cones would also fit them. This is one reason for proposing a new
synthesis tool. Furthermore, without the tool, for more than two
motions, it becomes hard to understand what overall motions
would result from the superposition of different moving patterns.

We therefore use the projective plane as a means of better
describing overlaid motions, and we shall see how this simplifies
the analysis and synthesis of motion patterns.

If a signal f is the additive superposition of moving layers, its
Fourier transform F is the superposition of Dirac planes that all
pass through the origin. To represent these motions in the projec-
tive plane, we assign a point in the projective plane to a 2D moving
pattern (a plane in the Fourier domain) and a line in the projective
plane to a 1D moving pattern (a line in the Fourier domain). This
representation is useful because a point will represent the unique
motion vector (both direction and speed) in the case of 2D pat-
terns, and a line the set of all possible motion vectors in the case
of 1D patterns. The motion of a plaid pattern will thus result from
the intersection of the two lines that correspond to the motions of
the 1D components. A further and obvious benefit of the projective
plane is that we can describe the motions in two dimensions in-
stead of three.

The projective-plane representation is particularly useful for syn-
thesis. The correspondence between motion patterns and the pro-
jective plane is bijective. By placing points and lines in the
projective plane we can thus generate various motion patterns.
The best way to learn about this possibility is to use our interactive
tool. The interactive tool is described in Appendix B.

We now present two examples of how to use the interactive tool.
With two intersecting lines in the projective plane you see the

coherent motion of the plaid that corresponds to the intersection.
When adding a third grating, the coherent percept breaks down
and three different combinations of one plaid and one grating
can be perceived (Andrews & Schluppeck, 2000). This effect can
easily be understood in the projective plane because the three lines
intersect in three points, which correspond to the admissible plaid
motions. The effect is strongest when the center of the projective
plane is inside the triangle described by the three intersections.
However, once you have all three lines intersecting in one point,
only the one coherent motion corresponding to that point is seen.
In general, the intersection points in the projective plane predict
the motion percepts well. Moreover, the coherence of the per-
ceived motion is higher for smaller triangles. Once you stop the
motion of one layer, the set of admissible velocities is reduced to
the single coherent motion of a plaid.

The second example is the 2D–1D entrainment effect (Mota et al.,
2004). Start with the default (circular) aperture, additive transpar-
ency, and one grating. You see the motion orthogonal to the orien-
tation of the grating. Now place a noise pattern in the projective
plane. You will see two transparent layers. The separation of the
layers is better, the farther away the point is from the line. Once
you place the point on the line, you see a coherent motion of the
noise and the grating. However, when you move the point along
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
the line, you will see that the motion of the noise pattern will al-
ways drag along the motion of the grating; this is the 2D–1D
entrainment effect. As you change the type of superposition and
the shape of the aperture you will notice that the effect is quite sta-
ble. The effect is simply explained by noting that the perceived mo-
tion is the intersection of the two layers in the projective plane (the
common set of admissible velocities). However, at extremely elon-
gated apertures, the barber-pole illusion (a motion of the grating
seen along the aperture) will dominate and lead to a further inter-
esting percept: the grating and the noise are seen as moving in dif-
ferent directions but no transparent layers are perceived. Again,
transparency is determined by the distance between the layers in
the projective plane.
7. Prediction of eye movements on overlaid movies

7.1. Introduction

We have seen in the section on confidence measures that mo-
tion estimation involves the determination of the appropriate mo-
tion model. In the simple case of one translation, i0D and i1D
signals must be suppressed because motion can be estimated only
for i2D signals. Generalizing this principle to more complex motion
patterns requires more complex suppression mechanisms that, in
our case, involve the invariants of the generalized structure ten-
sors. The very same suppression mechanisms increase the effi-
ciency of the representation, since the suppressed signals (of
lower intrinsic dimension) exhibit increasingly complex regulari-
ties and by that increasingly complex redundancies.

We now make two assumptions: (i) the visual system does sup-
press signals with lower intrinsic dimensions (lower ranks of the
structure tensors) and (ii) the resulting representations are some-
how involved in the guidance of eye movements, in other words,
eye movements tend to focus on less redundant features.

To test these hypotheses, we measure eye movements that sub-
jects make on videos with overlaid motions and predict the eye
movements based on different representations of the movies, using
Machine Learning techniques to distinguish attended movie
patches from control patches. The representations are exactly
those that would arise from the suppression of increasingly com-
plex regularities, i.e., we start from the invariants of J1 and move
on to the invariants of J2, and for each invariant we use represen-
tations that would require an increasingly higher rank in order to
be different from zero – see Table 2. More precisely, we use as rep-
resentations the invariants H1 (indicates that the rank of J1 is at
least one), S1 (rank of J1 is at least two), K1 (rank of J1 is three),
H2 (rank of J2 is at least one), S22 (rank of J2 is at least two), S23 (rank
of J2 is at least three), S24 (rank of J2 is at least four), S25 (rank of J2 is
at least five), and K2 (rank of J2 is six). We shall see that as we move
along with less redundant representations, the quality of the pre-
dictions tends to improve, and some of the improvements are
highly significant.
7.2. Methods

7.2.1. Stimuli and experimental setup
For the experiment, we used 19 high-resolution (1280 by

720 pixels) overlaid movie clips of 17 s duration each. Each movie
was created by superimposing pairs of two videos randomly
selected from a set of 14 outdoor natural scene sequences (Dorr,
Martinetz, Gegenfurtner, & Barth, 2010). Spatio-temporal fre-
quency bands were equalized before the superposition to avoid that
blending two movies with very different spatio-temporal spectral
energy distribution would lead to the perceptual dominance of
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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one component video in the blended result. To this end, movies
were decomposed into an anisotropic spatio-temporal Laplacian
pyramid with five spatial and five temporal levels, and blending
weights were computed separately on each pyramid level as the re-
ciprocal of its standard deviation. Samples of the resulting stimuli
are shown at http://www.ebarth.de/demos/VRspecial.

The 19 resulting videos were shown in random order to ten vol-
unteering subjects with normal or corrected to normal vision. The
experimental setup consisted of an Iiyama Vision Master Pro 514,
22” display screen with an actual viewable diagonal of 20” and
an SMI Hi-Speed eye tracker system running at 1250 Hz. The view-
ing distance was 50 cm. A nine-point array was used to calibrate
the tracker. The displayed size of the videos was approximately
43� by 23� of visual angle (because the aspect ratios of the screen
and the videos did not match, the videos were displayed in the
‘‘letterbox” format with black stripes at the bottom and top of
the screen). The subjects were instructed to freely view the movies.
After each movie clip, drift correction was performed and, halfway
through each viewing session, the subject was offered a short break
in order to relax. The second part of the viewing started with a full
recalibration of the eye tracker.

The saccades were extracted from the collected gaze data using
a velocity based procedure (Böhme, Dorr, Krause, Martinetz, &
Barth, 2006). The resulting saccade data was further filtered so that
samples rendered invalid because of blinks were removed from the
data. About 10,000 saccades remained after filtering.

7.2.2. Feature extraction
Here we describe the computations required to determine the

invariants and how we use the invariants to compute a feature vec-
tor for the subsequent classification stage.

7.2.2.1. First linear stage: Gaussian pyramids and derivatives. We
have chosen the simplest way of estimating derivatives, namely
to first convolve the image sequence with a Gaussian smoothing
kernel, and to then compute the differences among nearby pixel
values (e.g., fx at position (x,y, t) would result as the difference be-
tween the values f(x � 1,y, t) and f(x + 1,y, t)). Second order deriva-
tives are obtained by iterated differentiation, e.g., fxx is obtained by
applying the above first order derivative to fx instead of f.

In order to obtain representations with multiple spatio-tempo-
ral scales, we perform the smoothing operation with different lev-
els of resolution. The details of the implementation and the values
of the parameters are the same as in Vig, Dorr, and Barth (2009)
but for the fact that we here use an anisotropic spatio-temporal
Gaussian pyramid with five spatial and five temporal levels. In
other words, the movie is successively blurred (with a Gaussian
kernel with r = 1 pixel) and subsampled, and the derivatives are
then computed as pixel- and frame-wise differences on all the 25
scale levels.

7.2.2.2. First nonlinear stage: product terms. The nine product terms
required to estimate the tensor J1 are defined by Eq. (21), e.g., f 2

x

and fxfy. The 36 product terms in J2 are defined by Eq. (15), i.e.,
all possible combinations of the components of L, e.g., f 2

xx; f xxfyy,
and fxxftt. Because the structure tensor is symmetric, only six and
21 product terms have to be computed in practice, respectively.
Such multiplications are the key nonlinearity for the suppression
of signals with lower intrinsic dimensions (Zetzsche & Barth,
1990).

7.2.2.3. Second linear stage: spatio-temporal pooling. As can be seen
in Eqs. (3), (21), (15), the computation of the structure tensors in-
volves a convolution of the nonlinear product terms with a
smoothing kernel x. Our kernel is a Gaussian with a width of
r = 1 pixel. For motion estimation, the size of x should be adapted
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
to the size of the spatio-temporal neighborhood for which one can
assume the motion model to hold. In practice, however, the ex-
pected size is not known (but could be estimated). We have not
systematically investigated the role of this parameter with respect
to the prediction results.
7.2.2.4. Second nonlinear stage: invariants. The invariants of J1 are
defined by Eq. (18). We used the first part of the equations, i.e.,
we computed H1 as the trace of J1, S1 as the sum of minors, and
K1 as the determinant. In addition, we equalized the variances of
the invariants by computing H6

1; S3
1, and K2

1. We did this because
we wanted the invariants to differ only in terms of how they sup-
press different signal types and not in terms of how they weight
the remaining signal types (because they comprise of products of
one, two, and three eigenvalues, respectively). The invariants of
J2 are defined in Section 4.4. For a 6 � 6 matrix it is computation-
ally more efficient to compute the invariants numerically by per-
forming an eigenvalue analysis, and then using the sums and
products of the resulting eigenvalues to compute the invariants.
However, we used the geometric means, and not the products of
the eigenvalues, in order to equalize the differences between the
invariants with respect to how they vary over space and time.

Note that we compute the invariants in order to not depend on
a particular choice of the coordinates, in our case (x,y, t) in horizon-
tal, vertical and time directions. One intuitive interpretation is that
we need a mechanism that determines locally the main directions
of signal variance, and then we need nonlinearities that generate
products and sums of products of these variances (

PQ
-structures).
7.2.2.5. Final pooling stage: signal energy as feature vector. There are
two reasons for not using the invariants, say K1(x,y, t), directly for
making the predictions. The first reason is that both the eye tracker
and the eye movements are not precise. Therefore, we have to con-
sider a spatio-temporal neighborhood (window) around the fixa-
tions to allow for position uncertainty. The second reason is that
using all pixels contained in a reasonably-sized window becomes
computationally intractable. For a spatio-temporal patch of 64 by
64 pixels (about 2.5� by 2.5�), the dimensionality of the pixel space
in which subsequent learning algorithms (see below) would have
to operate is 4096. Hence, a representation is needed to reduce
the dimensionality of the feature space.

We therefore decided to compute the local signal energy in a
window around each saccade landing point (x,y) as

es;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W2
s

XWs=2

i;j¼�Ws=2
I2
s;tðxs � i; ys � jÞ

s
; ð20Þ

where Is,t is a frame of the sth spatial and tth temporal level of the
saliency pyramid with I being one of the invariants H1, . . . ,K2, which
had been computed before for every pixel. Because of the reduced
resolution of higher spatial levels, the fixation point (xs,ys) on spa-
tial level s is (x/2s,y/2s). For the same reason, window size Ws was
decreased by a factor of two per level in the spatial domain so that
the spatial envelope was kept constant (W0 was set to 64 by 64 pix-
els for all simulations, Ws = W0/2s). In time, one frame of a lower le-
vel corresponded to several frames on the original level, so that the
time window was about half a second. Note that the dimensionality
of the space in which the prediction takes place is thus independent
of window size.

As a result of all the above steps, we obtained a 25-dimensional
(five by five) feature vector with each component being the signal
energy of a particular invariant at a particular scale, and in a win-
dow around the considered location.
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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Fig. 2. Box plot comparing ROC scores of the invariants of J1 and J2 on overlaid
movies over all 20 training/test set realizations (for a window size of about 2.5�).
Horizontal lines indicate the median, the lower and upper quartiles, and the
minimum and maximum values of the specific result set. Circles represent outliers.
ROC scores were obtained for different invariants (horizontal axis). Comparison of
the prediction performance was done by Wilcoxon’s signed rank test. Note that
when moving on the horizontal axis, there are steps where ROC score improves
significantly; these are p(H1,S1) = 19 � 10�4, p(S1,K1) = 0.89 � 10�4, and
p(K1,S24) = 1.4 � 10�4. Further significant differences are p(H1,H2) = p(S1,S22)
= p(S1,S25) = 0.89 � 10�4, and p(K1,K2) = 1.03 � 10�4. Finally note that overall, all
invariants of J2 and the highest-order invariant of J1 give a very high prediction rate
(median 78%, indicated by the red dotted line, or higher).
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7.2.3. Machine learning and classification
The locations can be of two types: attended and not attended

locations. The set of attended locations consisted of the landing
points of the approximately 10,000 saccades extracted from the re-
corded gaze data. For the non-attended class that contains image
regions that were of relatively low saliency, we shuffled the movies
and their corresponding scanpaths, so that the non-attended re-
gions of a selected video were picked from the saccade landing
points on a different, randomly chosen video and vice versa. This
procedure might introduce some overlaps in the two classes, but
removes artifacts due to the central fixation bias and assures that
the negative examples are drawn from the specific distribution of
human fixation locations.

In addition, the data set of all feature vectors was divided into
two subsets: the training set, containing the fixations of two-thirds
of all subjects (on all 19 movies), and a test set with the fixations of
the remaining one-third of the subjects (also on all movies).
Although we used saccade data from all movies, we made sure that
a subject’s scanpath on a given movie appeared only in one of the
two subsets, i.e., we were predicting the behavior of new subjects.

On the first subset of data we learned how to separate the clas-
ses and on the second subset we tested how well we can predict
the eye movements of unknown subjects by using the learned clas-
sifier. For learning we trained a soft-margin Support Vector Ma-
chine, with a Gaussian kernel (using the standard LIBSVM
package). Twenty different training and test set realizations (ran-
dom subdivisions of the data into the two subsets) were used to
perform hypothesis testing. We performed this analysis on the ba-
sis of all invariants of J1 and J2. The above classification framework
is the same as the one used in Vig et al. (2009) for analysis of the
predictability of eye movements on natural movies.
7.3. Results

The box plot in Fig. 2 is constructed from the ROC (receiver-
operator characteristic) scores obtained for the different invariants
of J1 and J2 (horizontal axis of the plot) over all training and test set
realizations. ROC curves illustrate the possible tradeoffs between
true-positive and false-positive decisions that would be expected
from a classifier. The smaller the Area Under the Curve of the
ROC (ROC score or AUC) the more the predictor resembles a ran-
dom classifier, which has an AUC of 0.5. An AUC of 1.0 means per-
fect discrimination.

The left part of the figure shows that the predictability of eye
movements increases with the intrinsic dimension of the signal,
i.e., the rank of J1: invariants that extract features with higher
intrinsic dimension are more predictive. The right part of the figure
shows the same effect for the higher-order structure tensor J2.
More importantly, the predictions based on J2 are better than those
based on J1 (see figure caption for details). This confirms our
hypothesis that redundancies are suppressed even in the more
complex case of overlaid motions.
8. Discussion

Neural systems are known to encode changes, a principle that
can increase the efficiency of a visual representation. When the in-
put is one-dimensional, encoding changes as deviations from a
constant signal is straightforward. Multidimensional signals, how-
ever, can be constant in different ways, and therefore the problem
of how to encode changes is more complex. One basic classification
of how a multidimensional signal may change is due to its intrinsic
dimension (Zetzsche & Barth, 1990). In Barth and Watson (2000) it
has been shown how the principle of encoding only features with
higher intrinsic dimensions relates to visual motion selectivity.
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
Based on a generalization of the structure tensor, we have here
presented an extension of these concepts to the case of multiple
motions – see Table 2.

Moreover, we have here shown how to determine the basic
types of overlaid motion signals based on the rank of the general-
ized structure tensor. To experience this, the reader can generate
different motion patterns that correspond to the different lines of
Table 2 by using the interactive tool. The more reddish and the less
green the entries in that line are, the more undefined the motion is.
The classical example is that of the aperture problem in the second
line of Table 2. In this case, the motion percept is mainly deter-
mined by the shape of the aperture. We have presented the 2D–
1D entrainment effect as an example of a higher-order aperture
problem. Such problems occur when the generalized structure ten-
sor is ill-conditioned.

Spatio-temporal scales are defined by the support of the deriv-
atives. A further scale parameter is the support of the integration
kernel x, which should correspond to the region for which the mo-
tion model is valid. The convolution with x is a linear pooling of
nonlinear responses, which, in turn, are products of responses of
linear filters, e.g., J2 consists of terms such as x� fxxftt. We have
not addressed the relationship between the initial linear integra-
tion scale (support of the derivatives, size of V1-like receptive
fields) and the nonlinear-linear pooling scale (the size over which
the nonlinear terms are integrated).

A further limitation is that we do not deal with color, but we
have shown elsewhere (Mota, Stuke, & Barth, 2006) how the ap-
proach can be extended to deal with multispectral images, and
how color can help to solve the problem of estimating multiple ori-
entations and motions.

In order to better understand the relationship between the indi-
vidual motion layers and the global motion of multiple transparent
layers, we have used the projective-plane representation of mo-
tion. Single points in the projective plane represent well-defined
motions. The motion layers are lines or points in the projective
plane. If their intersection defines a single point, this point
will be the single coherent motion that we see. Multiple points
generate transparent motions, and lines generate incoherent mo-
tions in the sense that all motions that correspond to points on a
line are admissible. An obvious limitation of the projective-plane
motions. Vision Research (2010), doi:10.1016/j.visres.2010.08.011
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representation of motion is that it is, like the Fourier-domain rep-
resentation, a global representation of motion patterns and there-
fore does not include a description of apertures. Moreover, we have
designed and implemented an interactive tool for generating mo-
tion patterns. We believe that the interactive tool can be helpful
for better understanding multiple-motion stimuli and their associ-
ated percepts.

Finally, our experimental results show that eye movements on
overlaid natural movies can be predicted with high accuracy by
using the invariants of the generalized structure tensors J1 and J2

(prediction rates of over 70%). However, the higher order invariants
of J2 (the tensor for two motions) are significantly more predictive
(see Fig. 2). This demonstrates that our approach can be success-
fully applied to complex natural stimuli, and that it can yield very
good predictions of the observed behavior with just a small num-
ber of standard parameters.

Overall, we hope to have contributed to the understanding of
what kinds of nonlinearities are needed to deal with the basic
types of signal variations in the visual input, such as to obtain a
more efficient representation, where higher-order redundancies
are suppressed.
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Appendix A. The spatio-temporal structure tensor

For an image sequence f(x,y, t), the structure tensor is defined as

J ¼ J1 ¼ x �
f 2
x fxfy fxft

fxfy f 2
y fyft

fxft fyft f 2
t

0
B@

1
CA: ð21Þ

If the trace of J differs from zero, the intrinsic dimension is at
least one but could be higher; thus the trace detects all kinds of
spatio-temporal changes that are not further differentiated. The
determinant detects non-stationary 2D features such as corners
and dots. As shown in Barth (2000), the minors of J encode the mo-
tion: if f is f = (x � vt), the motion vector v is

v ¼ M31

M11
;�M21

M11

� �
: ð22Þ

The minors Mij are the determinants of the matrices obtained
from J by eliminating row 4 � i and column 4 � j, e.g.,
M11 = x�fx�x�fy �x� fxfy�x�fxfy.
Appendix B. How to use the interactive tool

The interactive tool (IT) displays the synthesized motion in the
left panel and the projective plane in the right panel. In addition it
has a graphical user interface (GUI) with menus and buttons. The
right panel and the GUI are used to define the motion layers. The
left panel and the GUI are used to define the aperture and view
the resulting motion sequence. The intensities are displayed di-
rectly without any correction of possible monitor nonlinearities.
Please cite this article in press as: Barth, E., et al. Efficient coding and multiple
B.1. Projective-plane window (right panel)

The spatial patterns in the motion layers can be of two types:
either a sinusoidal grating (spatial 1D pattern) or a spatial noise
pattern (spatial 2D pattern).

A grating is defined by a line in the projective plane. After acti-
vating the ‘‘Grating” button (bottom left), the user draws the line
by clicking and dragging in the right panel. The first left-button
mouse click defines one point and the release of the button a sec-
ond point of the desired line. A line will appear extending from the
point where the mouse button was first pressed to the point the
mouse was released at. The two points continue to be marked with
anchors that can be dragged any time in order to modify the line.
The distance between the anchors defines the spatial frequency
of the grating. The distance of the line from the center of the panel
defines the slowest admissible velocity. The orientation of the line
equals the orientation of the grating.

To define a noise pattern, the user should first select the ‘‘Noise”
button (below the ‘‘Grating” button) and then click on the right pa-
nel once (again by using the left mouse button). The position of
that click defines the motion of the layer (remember: translating
2D spatial patterns are points in the projective plane). The speed
is defined by the distance to the center and the direction of motion
by the direction vector from the point to the center. Thus, as one
moves the point towards the center, the motion will slow down.
The circle drawn around the dot indicates the variance of the noise
pattern. To increase the speed of the grating or the noise pattern,
move the line or dot away from the center. To change the orienta-
tion of the grating, rotate the line by dragging one or both anchors.
To change the variance of the noise pattern, increase the radius of
the circle drawn around the point by selecting and dragging the
circle line.

B.2. Multiple layers

To add another layer, repeat the procedures above. The IT is cur-
rently limited to three motion layers. The overlay can be either
additive or multiplicative. The type of overlay can be selected by
the two radio buttons ‘‘Additive” and ‘‘Multiplicative”.

B.3. Aperture and movie window (left panel)

In addition to displaying the resulting movie, the left panel can
be used to draw different apertures. The default aperture is a circle.
Other apertures can be selected from the ‘‘Aperture” pull-down
menu. Furthermore, the apertures can be translated and rotated.
Finally, the apertures can be reproduced by the ‘‘Edit Copy Paste”
feature and also deleted. Different types of apertures can be over-
laid. Each new aperture needs to be first selected from the pull-
down menu. After a selected aperture has been drawn, the mouse
cursor switches to the selection mode, so that the user can select
one or more apertures, e.g., for rotation or deletion.

B.4. Remaining buttons and features

The ‘‘Start” button will start the movie in the left panel. The
same button will also stop the movie once it runs. The ‘‘Clear” but-
ton will delete the selected motion layer (grating or noise) in the
right panel, and ‘‘Clear All” will delete all the motion layers. The
apertures can only be deleted by selection and the ‘‘Delete” option
in the ‘‘Edit” menu. The ‘‘Detach” button will detach the applet
from the browser so that one can easily place the IT window in a
preferred position. One can stop (or restart) the motion of just
one layer by a double click on the anchor of a line or a point in
the projective plane.
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